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1918,69621 Villeurbanne, France 
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Abstract. The quantum conjugate momentum of the angular momentum modulus is 
derived together with those of J, and J3. In fact we arrive at the conjugate momentum of 
the operator j such that J 2  = j ( j  + l)h2. 

1. Introduction 

From a fundamental point of view, it is important to know the canonical set of 
variables required for the description of a physical system. Concerning rotation it is 
well known that two components of the angular momentum cannot belong to the same 
canonical set, since their commutator is not zero, so the prescribed variables are the 
angular momentum modulus J (or its square J2) and one of its components, say J,. 
Here J is J = J J 2  where J 2 =  JE +J: +Jz, i.e. it is the operator with the same 
eigenvectors as J 2  with each eigenvalue of J being the positive square root of the 
corresponding eigenvalue of J2. Now, the conjugate momenta of J and even of J, are 
not known. Moreover, these momenta can have an interesting physical application to 
the fundamental description of rotation in a many-body system, in order to give 
explicitly the dependence of the Hamiltonian on the angular momentum modulus J. 
The method is formally simple and has been applied by Villars (1965) and Rowe 
(1967) to the very simple cases of centre of mass motion and rotation in a two- 
dimensional problem. 

Sau (1977) has previously generalised in classical mechanics the well known 
notions of action angle variables (Born 1927). Let us recall here the principal results. 
Let r be a vector so that 1. r = 0 and {r, J. n} = n x r, where n is a constant vector and 
{ } stands for the classical Poisson bracket (CPB). Then, a correct choice for P1 and a, 
the respective conjugate variables of J, and J, is: 

p1 = --tan-'(JJ;'); a = tan-'[zJ(yJ, -xJ,,)-']. (1) 

Indeed we get: 

{P I ,  Jz} = 1, {Pl, J} = 0, {a, J,} = 0, {a, J} = 1. 

So a, P1, J, and J fulfil the necessary relations for a canonical set. If we go to quantum 
mechanics, we have always [P1,J,]=ih but not [cu,J]=iA, where [ ] is the com- 
mutator. We remark that [PI, J,] = iA  because the CPB algebra {Jx, J,} = J, (and cyclic 
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permutations) has its quantum equivalent [J,, Jy]  = ihJ, (and cyclic permutations). If 
we define 

A l  = i(yJx -xJy)/r, A2 = izJ/r A 3 = J  (2) 

we have a similar CPB algebra: 

{AI, A2}=A3 (and cyclic permutations) 

but with no quantum equivalent. If we put: 

V: = A l + i A 2  VI_ =Al- iA2 

we get: 

{J, V:}=-iV: {J, VI_}=iVL 

In the quantum mechanical case (0 2), we shall look for operators V’ which are, in 
a way, eigen-operators of J ,  i.e. such that: 

[J, V’] = V’A’(J), (4) 

a relation similar to (3). But now the eigenvalue A ’ may be a function of J. This way is 
interesting since, if relation (4) holds, then V’ is also eigen-operator of J z ,  [J2, V’] = 
V’A, and it is less difficult to work with J2. In fact, curiously, as we shall see in Q 3, we 
shall arrive naturally at the conjugate of operator j such that J2 = j ( j  + 1)R2 and not of 
J itself. In § 4, we shall complete the canonical set and give the conjugate momenta of 
J, and also of 4 ,  the projection of J on a direction attached to the many-body system. 

2. Eigen-operators of J 

We shall follow the same approach as in classical mechanics (Sau 1977). Let u3 be a 
vector function of the positions of the particles. We can choose simply the position 
vector of a given particle, or, more symmetrically, the vector giving a principal 
direction of the inertial tensor. u3 is associated with the many-body system. Let 
r3 = u 3 - [ ( J .  u3)J/J2], i.e. classically, the projection of u3 on the plane orthogonal to J. 
With this definition r: = r3, J .  r3 = r3. J = 0, but the Cartesian components of r3 do 
not intercommute. We have for instance, with J 3  = ( J .  u3 ) /u3 ,  

[ x 3 ,  y3] = -ih~i?:JJ-~ 

and formally 

ugJg 
J4 

r3 x r3 = -ih -J = -ihW 

with k = u:J:/J4. r also fulfils the commutation relation [r3, J .  n]  = ih(n x r3),  n being 
a constant vector. Let us write all the relations we shall need: 

+ [r3, J .  n ]  = ih(n x r3) 

r3 X r3 = -ihW 
r3 = r 3  

with k = u:J:/J4. 

r 3 .  J = J .  r3 = 0 

(5  ) 
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All through this paper we shall deal with operators, so the order of factors is 
important. But, when we treat expressions of commuting operators, we shall use 
simple algebraic notation. Now we suppose there exists an operator V’ so that 
[J2 ,  V’] = V’A(J ) .  

As in classical mechanics we try to write V‘ as a linear combination of operators 
(Jxy3-x3Jy) and 2 3  (relations (2) and (3)), which are Hermitian. But now the 
coefficients of the linear combination may depend on J, so we write: 

V ’  = (Jxy3 -x3Jy)a1(J)+ r3az(J). 

Because of the commutators 

we get the eigenvalue problem 

with solutions 

1. h + (h2 + 4 J 2 y 2  
a:  = i J  

2 J  
A 1  = h[h+(h2+4J2)’/2] a l  = 

2 (h2 + 4 J 2 y 2  - h 2 
a2 = -iJ. 

2 J  
A2  = h[h - (h2 +4J2)’/*] a l  = 

Let us now look for the commutator between one V’ and a function of J 2 .  Using 
relation (A.3) of appendix 1, we get 

[ f ( J 2 ) ,  v’] = v‘(~(A + J ~ ) - ~ ( J ~ ) )  or f ( J 2 ) v ’ =  v ’ ~ ( A  +J~). (7) 

[J, V’]  = V’((J2 + A )lI2 - J). 

We now suppose that f ( J 2 )  = J = J J ~  and we find 

(8) 

If we let h+O in (8), the quantum Poisson bracket (l/ih)[ ] gives the CPB, with the 
eigenvalues [ ( J 2  + -J]/ih giving the classical values +i or -i according to A = A 2  
or A l ,  V i  and V i  being then the classical V+ and V- (relation (3)). 

Another interesting limiting case is when J is sufficiently great so that: 

(A2  + 4 J 2 y 2  = 25  + O(h2) 
then 

1 
- [ ( J 2  ih 

-J] = ki + O(h2) 

i.e. the classical values, the error being of order h2. So we can expect that the classical 
decomposition of the Hamiltonian would give general features valid for sufficiently 
great angular momentum. This decomposition will be made in a separate paper. 
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3. The conjugate momentum of 1 

Let us now return to relations (6) and let us introduce an operator j so that 

-h+ ( h 2 + 4 J 2 ) 1 / 2  
2h 

j =  (9) 

then 

J z  = j ( j  + l)h2 

and A1 and A z  are rational functions of j so that 

(h2 + 4J2)’/* = (2j + 1)h A l  = 2(j+  l)h2 ,i2 = -2jh2. 

We now look for the commutators [ j ,  V i ]  and [ j ,  V;]. To do this we have to 
calculate [ ( h z + 4 J 2 ) 1 / 2 ,  V‘]. We make use of relations (7) with F ( J Z ) =  (hZ+4Jz)1’2 .  
This function has interesting properties: indeed we get 

F(J2 + A 1) = F ( J 2 )  + 2h. 

Then 

[ j ,  v ; ]  = v;. 
A little trouble arises for Vi since we have 

F ( J 2 + h 2 ) =  { [ ( h 2 + 4 J z ) 1 ~ 2 - 2 h ] 2 } 1 ~ 2  

However, we do not always have F ( J z  + A2) = F ( J 2 ) -  2h; the relation is false for J = 0 
for instance. So we write 

F ( J z  + A z ) = F ( J 2 ) -  2h + [ F ( J 2  + A2)-F(J2)+ 2h] 

replacing (h2 +4J2) l j2  by (2j + l)h, we get: 

[ j ,  V i ]  = - V; (1 -A) 

with A = 3{[(2j - 1)2]1/2 - (2j - 1)). So, applied to an eigenket of j ,  A is zero for all 
values of j except for j = 0 where A = 1. V’, and Vi are then step operators for j ,  built 
with the physical observables of the system. 

Let us rewrite V’, and Vi using j :  

Vi = J,y3-x3Jy +ihz3j 

V; = Jxy3-x3Jy  -ihz3(j+l). 

We have omitted the factor h[(j+l)/j]’/2 behind V’, and h[j/(j+1)]1/2 behind Vi 
since this does not change the commutation relations (10). 

In the following we shall need the commutators [f(j), V;], [f(j), V;], [j,z3] 
where f(j) is a function of j .  The first two are easily found using relations (A.3) and 
(A.4) of the appendix 1, the eigenvalues being now +1 and -(1 -A). Thus, we obtain: 

(1 1) 

[fm, v’, 1 = vi Mi+ l ) - f ( j ) )  
whence 
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whence 
f ( j )Vi  = V;f( j - l+A) .  

We shall make use of these relations every time we need to pass a function of j from 
one side of a V' to the other side. 

For the third commutator we note that: 

2 3  = -i(Vi - V; )(2j + l)-'h-' 

[ j ,  z3] = -i[ Vk + Vi (1 -A)](2j + l)-'h-'. 
then 

If we call a the conjugate momentum of j so that [a, j ]  = i, the relations (10) show that 
Vi can be written in the more general form V; = eiagl(j), where gl( j )  is a function of 
j but also, eventually, of the other operators of the canonical set, since they commute 
with a and j .  We now try to obtain operators j+ = eia and (j+)+ = j- = e-ia which satisfy 
[i,i+] =j+,  [i,j-] = -j-, but also j-j+ = 1. In view of this we first find the relation 
between V;+ and V i :  

Vi+ = J,y3-x3Jy -ihjz3 = Jxy3-x3JY-ihz3j-ih[j, 231. 

Using (13) we have 

2 j - l + A  
2 j + 1  

v;+ = v; 
We now calculate the norm N = V"V; : 

2 j - l + A ( j )  2 j + l + A ( j + l )  
2 j + 1  2 j + 3  ' 

N = V\'V; = V; v; = viv; 
We remark that we shall have always A (  j + 1) = 0. The product Vi  V\  gives: 

V;V; =(JXy3-x3Jy)V; - i h ~ 3 ( j +  1)Vi 

=(Jxy3-x3Jy)V\ -ihzgV; ( j + 2 )  

= ( J , y 3 - ~ 3 J ~ ) ~ + i R [ J , y 3 - ~ 3 J ~ ,  z 3 ] i - 2 i h z 3 ( J x y 3 - x 3 J y ) + h 2 z ~ j ( j + 2 ) .  

The lengthiest calculation is for (Jxy3 - X ~ J ~ ) ~  since, as we have seen, even x3, y3 and 2 3  

do not intercommute. Using relations (5 ) ,  ( J , Y ~ - X ~ J ~ ) ~  can be brought into the form: 

(JXy3-x3Jy)' = r2(J2- J ~ ) - z : J 2 + 2 i h ~ ~ ( J x y 3 - x 3 J y ) + h 2 r 2 + A 2 W 2 .  

Also, using relations (9, we have: 

[Z3, J,y3 -x3Jy] = ih(x: + y: + + W;) .  
In order to have a compact expression we define the operator M such that M h  = J,. 

Similarly, we remark that J 3  is the projection of J on the direction u3 associated 
with the many-body system. So we define K = J3/h and so k = u:h2K2/J4. Adding all 
the terms, replacing J2 by j ( j  + l )h2 ,  we find after a little algebra: 

2 j + l  N = -  " h2 [ ( j  + 1)2 - M2][ ( j  + 1)2 - K 2] 
( i  + 1>2 

The operators U:, j ,  K ,  M are all Hermitian and intercommute. So if we define: 

(15) j - V;N-'/2 + -  
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we have j - j+ = 1 and [ j ,  j+ ]  = j+,  [ j ,  j - ]  = - j- .  Thus j +  can be regarded as j+  = eia with 
[a, j ]  = i. K and M commute with j+.  In order to have a canonical set, the conjugate 
momenta of K and M must be chosen so as to commute with j+  and j ,  and so too must 
the other variables, usually called 'intrinsic'. 

Now a can be given formally by 

1 
tan a =y( j+- j - ) ( j++ j - ) - '  

1 

Later, without loss of generality, we shall suppose that u3 is unitary. 

4. Complete canonical set for rotational motion 

4.1. The conjugate variable of M 

Although 

[tan-'(y3/x3), J , ]  = ih and [-tan-' J&', J , ]  = ih 

neither of these two angles can belong to the canonical set since the commutators 
between the first and J ,  and between the second and a, are not zero. In order to find p, 
the conjugate variable of M (and of Jz) ,  we shall follow the same approach as for a, 
i.e. we look for operators M+ and M- such that (M+)+ = M-, M+M- = M-M+ = 1 and 

The problem is now simpler since we already know J+ = J, + iJ, and J- = J, - iJy 
[M, M+] = M,, [M, M-] = -M-. 

which satisfy the previous commutation relations. M+ and M- can be taken as: 

We try to identify M+ with eiB, and so 

It can be verified easily that [PI MI = i. Moreover, M+ commutes with j and K, and 
so p does also. In order to be a good candidate for the canonical set, p must satisfy the 
commutation relation [p, a ]  = 0, or equivalently [M+, j + ]  = 0. We remark that the pair 
of operators M, J+ is of the type discussed in appendix 1 and so relation (A.4) can be 
used. Then the commutator [M+, j + ]  can be brought into the form (using relations 
(14), (15) for the definition of j+): 

[M+, ~ + ] = [ J + v ' , ( ~ - M + I ) - * -  v',J+(~-M)-~]F(~,M, K) (17) 
with 

Relation (A.4) has been used once for the pair j ,  V', and once for the pair M, J+ in 
order to get the products J+ V', and V;J+ on the left. 
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Now we have: 

( J ~  + i ~ , ) ( ~ ~ y 3  - X ~ J ~ )  = (y3 - ix3)(~* -J: + h ~ , ) -  (J~ - i~,)zg(h - J ~ )  
(Jxy3 - xgJy)(Jx + iJy ) = (y3 - ix3)(J2 - Jz ) + (Jy - iJx)z3Jz 

J+V; = [h2(y3-ix3)(j+~)-h(Jy - i ~ ~ ) z g I ( j +  1 - M )  

V;J+ = [h2(y3-ixg)(j+~)-h(Jy --iJx)z3](i-M). 

hence 

These two relations used in (17) give at once [M+, j+ ]  = 0 and so [P, a] = 0. 

4.2. The conjugate momentum of K 

We shall proceed for K in the same way as for M. Let (ul, u p ,  u3) be the Cartesian 
coordinate system associated with the many-body system (ul X up = u3 etc). Let 
J ~ , J z , J ~  be the components of J along the axes; they satisfy the well known 
anomalous commutation relations: 

[J1 ,  J2] = -ihJ3 

We define J: = (.TI_)+ = J1 - iJ2 and we get 

(and cyclic permutations). 

[J3, J: I = J:, [J3, J L ]  = -JL. 

Hence the operators 

[ j ( j  + 1)- K(K + l)J-1’2 K+ = (K-)+ = J!+ 

are such that 

[K, K + ]  = K+; [K, K-] = -K- and K+K- = K-K+ = 1. 

So K+ can be regarded as K+ = ely with [y ,  K] = i, y being the conjugate variable of K. 
Since J 1 ,  Jz,  J 3  commute with J+, J-, Jz, K+ = ely commute with j ,  M, p and we must 
show that y commutes also with a. We shall now calculate the commutator [K+, j+]. 

First, however, some preliminary relations must be derived. Let us define, analo- 
gously to r3, the vectors rl(x1, y 1 , z l )  and rp(xz,  y p ,  zp), projections of u1 and uz on the 
plane orthogonal to J: 

Jz J r 2 = u 2 - T .  
J 

Ji J r 1 = u 1 - 7  
J 

Hence 

(and cyclic permutations). (19) 

The quantity Jxy3-x3Jy which appears in Vi can be rewritten in a more useful 

(20) 

form (with u3 = u1 X UZ): 

Jxy3 - ~3 Jy = t 1 J 2  - J I Z Z .  
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Here also the pair of operators K, J:  are of the type discussed in appendix 1 so we 

From the above relations we obtain for the commutator [K+,  j + ] :  
can use relation (A.4). 

[K,, j+ ]  = [J: V; ( j  -K + 1)-' - V;J: ( j  - K)-']F(j ,  K ,  M )  (21) 

i.e. K in relation (21) plays the role of M in relation (17). Now with relations (18) and 
(19) it follows that 

(51 - i ~ Z ) ( z  1 ~ 2  -JIZZ) = -(z2 + iz l ) ( ~ z  - J: + ~ 3 )  + ( ~ 2  + i11)~3(h - ~ 3 )  

( z ~ J ~ - J ~ z z ) ( J I  - i J z ) =  -(z2+iz1MJ2-J:)-(J2fiJ1)z3J3. 

J:  V; = [ - A * ( Z ~  + i z lx j  + K) + f i ( ~ 2  + i~l)z3]( j  + 1 - K )  

V ~ J :  = [ - h 2 ( z 2 + i z l ) ( j + ~ ) + h ( ~ Z + i ~ 1 ) z g ] ( j - ~ ) .  

Hence 

Using these relations in (21) we see immediately that [K,, j+ ]  = 0 and so [ y, a] = 0. 

5. Conclusion 

The three pairs of operators ( j ,  a), (M, p),  (K, y) form the complete canonical set for 
the description of rotational motion. Obviously, all we have said remains valid when 
we deal with rotational motion around the centre of mass. If we investigate the 
properties of a rotationally invariant Hamiltonian, we find that the problem can be 
reduced since a is a cyclic variable ([H, J] = 0) and so also is M and its conjugate 
momentum p :  since [J,, HI = [J,, HI = [J-, H ]  = 0 then [M, HI = 0 and [p, HI = 0. 
This simply demonstrates the well known rotational degeneracy of H. 

Concerning the application to rotational motion, since a is a complicated object, it 
follows that the method of Villars (1965) cannot be applied. Then, rather than a, we 
shall use j+. Let H be a rotationally invariant Hamiltonian. In the above method, H is 
expanded in powers of j ,  here we try the equivalent series: 

H=Ho+Hlfl(j)+HZf2(j)+' * .+H&( j )+*  (22) 
where the unknown coefficients Hn depend on the 'intrinsic variables' only, and the 
f n ( j )  are such that: 

j ( j - l ) ( j - 2 ) * . . ( j - f l + l )  
f l !  

f n  (i) = 

These functions have the interesting property that 

f n  ( j  + 1 - fn (i) = f n  - 1 ( i), 
so (relation (A.4)) 

[ f n ( j ) ,  j+ ]  =j+fn-i(j). 

Then if H"), H"), H") .  . . are defined by: 

H(0) = H [H'", j+] = j+H('), [H'", j+ ]  = j + P ) ,  . . .  

Hb'= 1 H?&, 
we get: 

4) 

n=p 
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In order to obtain the H,,, the above triangular system must be inverted. Let us put: 

j ( j +  1).  , . ( j +  Y - 1) 
U! 

AY(] . )= (-1)" 

Then (see relation (A.7)) 
n 

p = i  
Ap-ifn-p = &,i* 

Hence: 
m 

H,, = H"'AP-,. 
p = n  

These results can be verified in the simple case of the one-body kinetic energy. The 
commutators H(' )  are calculated in appendix 2: we have (relations (AS), (A.6)) 

This last relation shows, with (23), that expansion (22) stops at H2f2. Using (24) and 
(25), we get 

which is the required result. 
In fact in expansion (22), the coefficients Hn can be obtained without introducing 

the intrinsic coordinates, remaining expressed in the original particle coordinates. 
Thus the advantage of working with independent-particle wavefunctions is not lost, 
although the dependence on the collective angular momentum has been extracted 
explicitly. We think here especially of the nuclear rotational problem. For example, 
we can hope to realise variational calculations in order to get the lower state of a given 
angular momentum (the Yrast line), or to obtain the value of the moment of inertia 
(see Rowe 1967). 

Appendix 1 

Suppose there are two operators O1 and 0 2  such that 

[Oi, 0 2 1  = OzA, 

where A is a function of O1. Let us look for the commutator 

Cn = io;, 0 2 1  

= O;t-'[ol, 0 2 ] + [ 0 ; - 1 ,  0 2 1 0 1  

= O;-'Ozh + c,,-101 = Cn-l(A + O,)+ 0 2 0 ; - ' A .  

This recurrence relation gives: 

Cn = O2[(Oi +A)" -071. 
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Then if f (Ol )  is a function of O1 we can write 

In the special case where A = 1, 

Appendix 2. The case of one-body kinetic energy 

In this case we take u3 = r, since J = r x p ,  then K = 0 and the canonical set reduces to 
(a, J ) ,  (P, J z ) .  

The part of j+  which does not commute with 

P 2 1 2 2 2  T = - = - ( p x  + p y  + P Z )  2m 2m 

is 

g ,  = (J,y - xJy + iti2j)r-l 

so g ,  is sufficient. 

We have 
Let us calculate T'", T'", . . . defined by [ T, g+]  = g+T'", [ T'l), g + ]  = g+T'2', . . . . 

[ p 2 ,  g + l = - 2 i h [ J x ( p , r 2 - y p .  r ) - ( p , r 2 - x p .  r)J, + i h ( p j r 2 - z p .  rj)]rF3 

since 
2 pyr  - y p .  r = J , x - z J ,  (and cyclic permutations) 

and 

J,(J,x - z J , ) - ( J , z  -yJz)Jy  = - z J 2 + i h ( J x y - x J y )  

we get 

h 2 ( j +  1) T(')  = - 
mr2 ' 

Then 

h2 
[ 7 - ( l ) ,  g t ]  = g+ 7 = g ,  T'2) 

m r  

[T'2', g c ]  = 0 .  
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Appendix 3 

79 

we get the following expansions (for 1x1 < 1): 
m 

<1+xr ’=  c f Y ( j ) X ”  
u = o  

m 

(l+x)-’= 1 Au(j)x”. 
u = o  

f u ( j )  and AY(] . )  are in fact the generalised binomial coefficients (1) and (-l)”(’+;-’). 
Multiplication of the two previous series gives: 

Comparison of the coefficients of x k  in the two terms leads to: 

Putting k = n -i, Y = p  - i we get: 
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